top of page

Proprioceptive Rehabilitation for Clients with Persistent Central Vertigo

Proprioceptive Rehabilitation  for the client with Persistent  Central Vertigo


By: Douglas Weiss DPT

FPTA Approved 12 CE’s, through 12/31/24

Target Audience: Physical Therapists and Physical Therapy Assistants

Persistent (central) vertigo is a commonly seen but often misunderstood cause of vertigo and dizziness in clients. Clients with strokes, brain injury, and movement disorders frequently have this type of vertigo that is not usually resolved with typical vestibular rehab. This course will teach you how to use proprioceptive rehabilitation to reduce and remove vertigo, dizziness, and unsteadiness in clients with central vertigo. Reduce dizziness and vertigo, improve proprioception, and reduce unsteadiness and dizziness with Proprioceptive Rehabilitation. If you are treating clients with dizziness and vertigo, this course is integral to building your understanding of the nature of  central vertigo and how to resolve it.


Module 1  Proprioceptive Rehabilitation Core Concepts

Introduction to defining Proprioception, balance, balance awareness and control, and the basic concepts of balance and proprioceptive rehabilitation

  • What is proprioceptive Rehabilitation? 

  • Anatomy of the proprioceptive balance system

  • Proprioception: learned or acquired? 

  • Defining balance, proprioception, and function

  • What is a balance challenge?

  • Balance: A motor function.

  • How is the skill of balance normally lost? 

  • What does proprioceptive loss look like? 

  • Proprioceptive rehabilitation defined

  • Effective Proprioceptive rehabilitation activities and exercise 

  • Peripheral balance system

  • Anatomy physiology of the inner ear and vestibular system

  • The limbic system, fear, and balance

  • Fear of falling and fall risk

  • Whole body proprioception and balance. 

  • What is balance programming?

  • How is balance improved?

  • Anxiety and balance 

  • How older adults relearn balance 

  • How does brain injury limit gait?

  • Case study: Loss of strength vs. loss of coordination

  • The role of instruction in improving balance 

  • Application of proprioceptive rehab to your client

  • The correct level of assistance in proprioceptive rehab

  • Effective treatment time for proprioceptive rehabilitation

  • Vertigo and Balance 

  •  Module 1 Quiz


Module 2 Complicating Factors: Persistent Vertigo

Introduction on how Persistent Vertigo can affect balance and limit ability


  • Causes of dizziness

  • Defining Vertigo

  • Central vs Peripheral Vertigo

  • Case study: Carotid artery Stenosis misdiagnosis

  • Defining Nystagmus 

  • Persistent Vertigo - what is it and how can it be treated?

  • Proprioception pathways

  • What does proprioceptive loss cause?

  • How to rehabilitate Proprioception

  • Persistent vertigo training PVT

·      Module 2 Quiz


Module 3 Gait Analysis and Deviations

How to identify normal gait patterns vs. gait patterns that limit walking ability and increase falls

  • Normal phases of gait

  • Wide-based gait pattern

  • Decreased step height

  • Decreased step length

  • Uneven step length

  • Decreased heel strike

  • Decreased weight shift

  • Hyperextension during stance

  • Antalgic gait pattern

  • Freezing

  • Dystonia 

  • Shuffling

  • How anxiety affects gait

  • Gait post-stroke

  • Stroke gait analysis

  • Module 3 Quiz

Module 4 Research Evidenced-Based Persistent Vertigo Rehabilitation

In-depth review of 11 research articles that provide current evidence on the effects of balance training on individuals suffering from Persistent Vertigo

  • Statistics of falls

  • Activities that reduce falls in the elderly

  • Perturbation-based training for fall reduction in older adults

  • Does perturbation training prevent falls in older adults

  • The clinical application of backward walking training to improve walking function balance

  • Examining Neuroplasticity for Slip Perturbation Training

  • Intense and unpredictable perturbation during gait training to improve balance abilities in people who have had a stroke

  • Gait post-stroke

  • Effects of Perturbation based Balance Training in sub-acute Persons with stroke

  • How fear of falling can increase fall risk in Older Adults

  • Perturbation-based training for fall reduction among older adults/ Current evidence and implication for clinical practice

  • Can proprioception be improved through rehabilitation 

  • Improving proprioception with target training 

  • Comparison of strategies for improving proprioceptive loss in clients with stroke 

  • Module 4 Quiz

Module 5 Persistent Vertigo Activities

Comprehensive video example of all activities proven to improve individuals suffering from Persistent Vertigo

  • Low-level single step 

  • Advanced single step

  • Beginning balance challenge

  • Beginning static challenge

  • Beginning treadmill challenge

  • Advanced treadmill challenge

  • Moderate Balance Challenge

  • Turning Challenge

  • Multitask 

  • Activities Stepping on stairs

  • Module 5 Quiz



Module 6 Neurolastic Persistent Vertigo Certification Exam

A comprehensive exam that covers all modules in the series. A pass rate of 80% is required to earn a certificate.


Course Materials

The 48-page Neurolastic Training Handbook details all activities discussed in the course to improve individuals suffering from Persistent Vertigo rapidly.

Resources/Works Cited

Alashram, A. R., Annino, G., & Mercuri, N. B. (2019). Task-oriented Motor Learning in Upper Extremity Rehabilitation Post Stroke. Journal of Stroke Medicine, 2(2), 95–104.  Askim, T., Indredavik, B., Vangberg, T., & Håberg, A. (2008). Motor Network Changes Associated With Successful Motor Skill Relearning After Acute Ischemic Stroke: A Longitudinal Functional Magnetic Resonance Imaging Study. Neurorehabilitation and Neural Repair, 23(3), 295–304.  Berg, K. (1989). Measuring balance in the elderly: preliminary development of an instrument. Physiotherapy Canada, 41(6), 304–311.  Beyaert, C., Vasa, R., & Frykberg, G. (2015). Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiologie Clinique/Clinical Neurophysiology, 45(4–5), 335–355. Bower, K. J., Clark, R. A., McGinley, J. L., Martin, C. L., & Miller, K. J. (2014). Clinical feasibility of the Nintendo WiiTM for balance training post-stroke: a phase II randomized controlled trial in an inpatient setting. Clinical Rehabilitation, 28(9), 912–923.  Blobaum, P. (2006). Physiotherapy Evidence Database (PEDro). Journal of the Medical Library Association, 94(4), 477-478. Retrieved from  Cadore, E. L., Rodríguez-Mañas, L., Sinclair, A., & Izquierdo, M. (2013). Effects of Different Exercise Interventions on Risk of Falls, Gait Ability, and Balance in Physically Frail Older Adults: A Systematic Review. Rejuvenation Research, 16(2), 105–114.  Cakit, B. D., Saracoglu, M., Genc, H., Erdem, H. R., & Inan, L. (2007). The effects of incremental speed-dependent treadmill training on postural instability and fear of falling in Parkinson’s disease. Clinical Rehabilitation, 21(8), 698–705.  Canning, C. G., Sherrington, C., Lord, S. R., Close, J. C. T., Heritier, S., Heller, G. Z., Howard, K., Allen, N. E., Latt, M. D., Murray, S. M., O’Rourke, S. D., Paul, S. S., Song, J., & Fung, V. S. C. (2014). Exercise for falls prevention in Parkinson disease: A randomized controlled trial. Neurology, 84(3), 304–312.  Cherup, N. P., Buskard, A. N., Strand, K. L., Roberson, K. B., Michiels, E. R., Kuhn, J. E., Lopez, F. A., & Signorile, J. F. (2019). Power vs strength training to improve muscular strength, power, balance and functional movement in individuals diagnosed with Parkinson’s disease. Experimental Gerontology, 128, 110740.  Chien, J. E., & Hsu, W. L. (2018). Effects of Dynamic Perturbation-Based Training on Balance Control of Community-Dwelling Older Adults. Scientific Reports, 8(1).  Chung, C. L. H., Thilarajah, S., & Tan, D. (2015). Effectiveness of resistance training on muscle strength and physical function in people with Parkinson’s disease: a systematic review and meta-analysis. Clinical Rehabilitation, 30(1), 11–23.  Conradsson, D., Löfgren, N., Nero, H., Hagströmer, M., Ståhle, A., Lökk, J., & Franzén, E. (2015). The Effects of Highly Challenging Balance Training in Elderly With Parkinson’s Disease. Neurorehabilitation and Neural Repair, 29(9), 827–836.  Dibble, L. E., Addison, O., & Papa, E. (2009). The effects of exercise on balance in persons with Parkinson’s disease: A systematic review across the disability spectrum. Journal of Neurologic Physical Therapy, 33(1), 14-26. Retrieved from Duchesne, C., Gheysen, F., Bore, A., Albouy, G., Nadeau, A., Robillard, M., Bobeuf, F., Lafontaine, A., Lungu, O., Bherer, L., & Doyon, J. (2016). Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson’s disease individuals. NeuroImage: Clinical, 12, 559–569.  Enchelmayer, K. B., Hamby, E. F., & Martindale, C. (2001). The impact of the Balanced Budget Act of 1997 on the physical therapy profession. Health Care Management, 19(3), 58-69. Retrieved from Budget _ Act _of_1997_on.9.aspx  Gerards, M. H., McCrum, C., Mansfield, A., & Meijer, K. (2017). Perturbation-based balance training for falls reduction among older adults: Current evidence and implications for clinical practice. Geriatrics & Gerontology International, 17(12), 2294–2303.  Gillespie, L. D., Robertson, M. C., Gillespie, W. J., Lamb, S. E., Gates, S., Cumming, R. G., & Rowe, B. H. (2009). Interventions for preventing falls in older people living in the community. Cochrane Database System Review, 15. Retrieved from  Goh, S. L., Persson, M. S. M., Stocks, J., Hou, Y., Welton, N. J., Lin, J., Hall, M. C., Doherty, M., & Zhang, W. (2019). Relative Efficacy of Different Exercises for Pain, Function, Performance and Quality of Life in Knee and Hip Osteoarthritis: Systematic Review and Network Meta-Analysis. Sports Medicine, 49(5), 743–761.  Goodwin, V. A., Richards, S. H., Taylor, R. S., Taylor, A. H., & Campbell, J. L. (2008). The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis. Movement Disorders, 23(5), 631-640. Retrieved from  Hackney, M. E., & Earhart, G. M. (2008). Tai Chi improves balance and mobility in people with Parkinson disease. Gait & Posture, 28(3), 456–460.  Hadjistavropoulos, T., Delbaere, K., & Fitzgerald, T. D. (2010). Reconceptualizing the Role of Fear of Falling and Balance Confidence in Fall Risk. Journal of Aging and Health, 23(1), 3–23.  Halvarsson, A., Olsson, E., Farén, E., Pettersson, A., & Ståhle, A. (2011). Effects of new, individually adjusted, progressive balance group training for elderly people with fear of falling and tend to fall: a randomized controlled trial. Clinical Rehabilitation, 25(11), 1021–1031.  Halvarsson, A., Franzén, E., Farén, E., Olsson, E., Oddsson, L., & Ståhle, A. (2012). Long-term effects of new progressive group balance training for elderly people with increased risk of falling – a randomized controlled trial. Clinical Rehabilitation, 27(5), 450–458.  Halvarsson, A., Franzen, E., & Stahle, A. (2015). Balance training with multi-task exercise improves fall-related self efficacy, gait, balance performance and physical function in older adults with osteoporosis: a randomized controlled trial. Clinical Rehabilitation, 29(4), 365-375. Retrieved from  Hausdorff, J. M., Rios, D. A., & Edelberg, H. K. (2001). Gait variability and fall risk in community-living older adults: A 1-year prospective study. Archives of Physical Medicine and Rehabilitation, 82(8), 1050–1056. Retrieved from  Handelzalts, S., Steinberg-Henn, F., Levy, S., Shani, G., Soroker, N., & Melzer, I. (2019). Insufficient Balance Recovery Following Unannounced External Perturbations in Persons With Stroke. Neurorehabilitation and Neural Repair, 33(9), 730–739.  Hardwick, R. M., Rajan, V. A., Bastian, A. J., Krakauer, J. W., & Celnik, P. A. (2016). Motor Learning in Stroke. Neurorehabilitation and Neural Repair, 31(2), 178–189.  Holtzer, R., Epstein, N., Mahoney, J. R., Izzetoglu, M., & Blumen, H. M. (2014). Neuroimaging of Mobility in Aging: A Targeted Review. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 69(11), 1375–1388.  Horak, F. B., Wrisley, D. M., & Frank, J. (2009). The Balance Evaluation Systems Test (BESTest) to differentiate balance deficits. Physical Therapy, 89(5), 484–498. Retrieved from  Horlings, C. G., van Engelen, B. G., Allum, J. H., & Bloem, B. R. (2008). A weak balance: the contribution of muscle weakness to postural instability and falls. Nature Clinical Practice Neurology, 4(9), 504–515.  Howe, T. E., Rochester, L., Neil, F., Skelton, D. A., & Ballinger, C. (2011). Exercise for improving balance in older people (Review). The Cochrane Collaboration.  Humulin. (2015). Retrieved April, 2015, from  The immediate influence of implicit motor learning strategies on spatiotemporal gait parameters in stroke patients: a randomized within-subjects design. (2019). Gait & Posture, 73, 575–576.  Integration of balance and strength training into daily life activity to reduce rate of falls in older people (the LiFE study): randomised parallel trial. (2012). BMJ, 345(aug15 2), e5528.  Jessop, R. T., Horowicz, C., & Dibble, L. E. (2006). Motor Learning and Parkinson Disease: Refinement of Movement Velocity and Endpoint Excursion in a Limits of Stability Balance Task. Neurorehabilitation and Neural Repair, 20(4), 459–467.  Jewell, D. V. (2011). Guide to evidence-based physical therapist practice (2nd ed.). Sudbury, MA: Jones and Bartlett Learning.  Jonsdottir, J., Cattaneo, D., Recalcati, M., Regola, A., Rabuffetti, M., Ferrarin, M., & Casiraghi, A. (2010). Task-Oriented Biofeedback to Improve Gait in Individuals With Chronic Stroke: Motor Learning Approach. Neurorehabilitation and Neural Repair, 24(5), 478–485.  Joshua, A. M. (2014). Effectiveness of Progressive Resistance Strength Training Versus Traditional Balance Exercise in Improving Balance Among the Elderly - A Randomised Controlled Trial. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. de Kam, D., Roelofs, J. M. B., Bruijnes, A. K. B. D., Geurts, A. C. H., & Weerdesteyn, V. (2017). The Next Step in Understanding Impaired Reactive Balance Control in People With Stroke: The Role of Defective Early Automatic Postural Responses. Neurorehabilitation and Neural Repair, 31(8), 708–716.  Latham, N., & Liu, C. J. (2010). Strength Training in Older Adults: The Benefits for Osteoarthritis. Clinics in Geriatric Medicine, 26(3), 445–459.  Lesinski, M., Hortobágyi, T., Muehlbauer, T., Gollhofer, A., & Granacher, U. (2015). Effects of Balance Training on Balance Performance in Healthy Older Adults: A Systematic Review and Meta-analysis. Sports Medicine, 45(12), 1721–1738. Leddy, A. L., Crowner, B. E., & Earhart, G. M. (2011). Functional gait assessment and Balance Evaluation System Test: Reliability, validity, sensitivity, and specificity for identifying individuals with Parkinson disease who fall. Physical Therapy, 91(1), 102-113. Retrieved from  Liphart, J., Gallichio, J., Tilson, J. K., Pei, Q., Wu, S. S., & Duncan, P. W. (2015). Concordance and discordance between measured and perceived balance and the effect on gait speed and falls following stroke. Clinical Rehabilitation, 30(3), 294–302.  Li, Z., Han, X. G., Sheng, J., & Ma, S. J. (2015). Virtual reality for improving balance in patients after stroke: A systematic review and meta-analysis. Clinical Rehabilitation, 30(5), 432–440.  Liu, J., & Kim, S. (2012). Effect of walking surface perturbation training on slip propensity and local dynamic stability. Work, 41, 3352–3354.  Liu, H. H., Yeh, N. C., Wu, Y. F., Yang, Y. R., Wang, R. Y., & Cheng, F. Y. (2019). Effects of Tai Chi Exercise on Reducing Falls and Improving Balance Performance in Parkinson’s Disease: A Meta-Analysis. Parkinson’s Disease, 2019, 1–8.  Lurie, J. D., Zagaria, A. B., Pidgeon, D. M., Forman, J. L., & Spratt, K. F. (2013). Pilot comparative effectiveness study of surface perturbation treadmill training to prevent falls in older adults. BMC Geriatrics, 13, 1-11. Retrieved from  Maki, B. E., Sibley, K. M., Jaglal, S. B., Bayley, M., Brooks, D., Fernie, G. R., Flint, A. J., Gage, W., Liu, B. A., McIlroy, W. E., Mihailidis, A., Perry, S. D., Popovic, M. R., Pratt, J., & Zettel, J. L. (2011). Reducing fall risk by improving balance control: Development, evaluation and knowledge-translation of new approaches. Journal of Safety Research, 42(6), 473–485.  McCrum, C., Gerards, M. H. G., Karamanidis, K., Zijlstra, W., & Meijer, K. (2017). A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults. European Review of Aging and Physical Activity, 14(1).  Mirelman, A., Rochester, L., Reelick, M., Nieuwhof, F., Pelosin, E., Abbruzzese, G., Dockx, K., Nieuwboer, A., & Hausdorff, J. M. (2013). V-TIME: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial. BMC Neurology, 13(1).  Mirelman, A., Maidan, I., Herman, T., Deutsch, J. E., Giladi, N., & Hausdorff, J. M. (2010). Virtual Reality for Gait Training: Can It Induce Motor Learning to Enhance Complex Walking and Reduce Fall Risk in Patients With Parkinson’s Disease? The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66A(2), 234–240.  Mirelman, A., Rochester, L., Olde Rikkert, M., Bloem, B., Giladi, N., Nieuwboer, A., & Hausdorff, J. (2017). TREADMILL TRAINING WITH VIRTUAL REALITY TO REDUCE FALLS AMONG OLDER ADULTS: RCT RESULTS. Innovation in Aging, 1(suppl_1), 1366.  Morris, M. E., Taylor, N. F., Watts, J. J., Evans, A., Horne, M., Kempster, P., Danoudis, M., McGinley, J., Martin, C., & Menz, H. B. (2017). A home program of strength training, movement strategy training and education did not prevent falls in people with Parkinson’s disease: a randomised trial. Journal of Physiotherapy, 63(2), 94–100.  Morris, M. E., Menz, H. B., McGinley, J. L., Watts, J. J., Huxham, F. E., Murphy, A. T., Danoudis, M. E., & Iansek, R. (2015). A Randomized Controlled Trial to Reduce Falls in People With Parkinson’s Disease. Neurorehabilitation and Neural Repair, 29(8), 777–785.  Muir, S. W., Berg, K., Chesworth, B., & Speechless, M. (2008). Use of the Berg Balance Scale for predicting multiple falls in community-dwelling elderly people: A prospective study. Physical Therapy, 88(4), 449-459. Retrieved from ptj.20070251  Nepveu, J. F., Thiel, A., Tang, A., Fung, J., Lundbye-Jensen, J., Boyd, L. A., & Roig, M. (2017). A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals With Stroke. Neurorehabilitation and Neural Repair, 31(8), 726–735.  Noh, H. J., Lee, S. H., & Bang, D. H. (2019). Three-Dimensional Balance Training Using Visual Feedback on Balance and Walking Ability in Subacute Stroke Patients: A Single-Blinded Randomized Controlled Pilot Trial. Journal of Stroke and Cerebrovascular Diseases, 28(4), 994–1000.  Oddsson, L. I., Karlsson, R., Konrad, J., Ince, S., Williams, S. R., & Zemkova, E. (2007). A rehabilitation tool for functional balance using altered gravity and virtual reality. Journal of NeuroEngineering and Rehabilitation, 4(1).  Paul, S. S., Canning, C. G., Song, J., Fung, V. S., & Sherrington, C. (2013). Leg muscle power is enhanced by training in people with Parkinson’s disease: a randomized controlled trial. Clinical Rehabilitation, 28(3), 275–288.  Paul, S. S., Dibble, L. E., & Peterson, D. S. (2018). Motor learning in people with Parkinson’s disease: Implications for fall prevention across the disease spectrum. Gait & Posture, 61, 311–319.  Pirouzi, S., Motealleh, A. R., Fallahzadeh, F., & Fallahzadeh, M. A. (2014). Effectiveness of treadmill training on balance control in elderly people: A randomized controlled clinical trial. Iranian Journal of Medical Sciences, 39(6), 565-570. Retrieved from  Pohl, M., Rockstroh, G., Ruckriem, S., Mrass, G., & Mehrholz, J. (2003). Immediate effects of speed-dependent treadmill training on gait parameters in early Parkinson’s disease. Archives of Physical Medicine and Rehabilitation, 84, 1760-1766. Retrieved from  Pollock, C., Eng, J., & Garland, S. (2011). Clinical measurement of walking balance in people post stroke: a systematic review. Clinical Rehabilitation, 25(8), 693–708.  Ramazzina, I., Bernazzoli, B., & Costantino, C. (2017). Systematic review on strength training in Parkinson’s disease: an unsolved question. Clinical Interventions in Aging, Volume 12, 619–628.  Rochester, L., Baker, K., Hetherington, V., Jones, D., Willems, A. M., Kwakkel, G., van Wegen, E., Lim, I., & Nieuwboer, A. (2010). Evidence for motor learning in Parkinson’s disease: Acquisition, automaticity and retention of cued gait performance after training with external rhythmical cues. Brain Research, 1319, 103–111.  de Rooij, I. J., van de Port, I. G., & Meijer, J. W. G. (2016). Effect of Virtual Reality Training on Balance and Gait Ability in Patients With Stroke: Systematic Review and Meta-Analysis. Physical Therapy, 96(12), 1905–1918.  Samuelsson, C. M., Hansson, P. O., & Persson, C. U. (2018). Early prediction of falls after stroke: a 12-month follow-up of 490 patients in The Fall Study of Gothenburg (FallsGOT). Clinical Rehabilitation, 33(4), 773–783.  Shen, X., & Mak, M. K. Y. (2014). Technology-Assisted Balance and Gait Training Reduces Falls in Patients With Parkinson’s Disease. Neurorehabilitation and Neural Repair, 29(2), 103–111.  Schinkel-Ivy, A., Huntley, A. H., Aqui, A., & Mansfield, A. (2019). Does Perturbation-Based Balance Training Improve Control of Reactive Stepping in Individuals with Chronic Stroke? Journal of Stroke and Cerebrovascular Diseases, 28(4), 935–943.  Saeys, W., Vereeck, L., Truijen, S., Lafosse, C., Wuyts, F. P., & van de Heyning, P. (2011). Randomized Controlled Trial of Truncal Exercises Early After Stroke to Improve Balance and Mobility. Neurorehabilitation and Neural Repair, 26(3), 231–238.  Sherrington, C., Michaleff, Z., Fairhall, N., Tiedemann, A., Whitney, J., Cumming, R., Close, J., & Lord, S. (2017). EXERCISE TO PREVENT FALLS IN OLDER ADULTS: AN UPDATED SYSTEMATIC REVIEW AND META-ANALYSIS. Innovation in Aging, 1(suppl_1), 268.  Sherrington, C., Michaleff, Z., Fairhall, N., Tiedemann, A., Whitney, J., Cumming, R., Close, J., & Lord, S. (2017b). EXERCISE TO PREVENT FALLS IN OLDER ADULTS: AN UPDATED SYSTEMATIC REVIEW AND META-ANALYSIS. Innovation in Aging, 1(suppl_1), 268.  Sherrington, C., Tiedemann, A., Fairhall, N., Close, J. C., & Lord, S. R. (2011). Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. New South Wales Public Health Bulletin, 22(4), 78.  Shimada, H., Obuchi, S., Furuna, T., & Suzuki, T. (2004). New Intervention Program for Preventing Falls Among Frail Elderly People. American Journal of Physical Medicine & Rehabilitation, 83(7), 493–499.  Shin, S. S., & An, D. H. (2014). The effect of motor dual-task balance training on balance and gait of elderly women. Journal of Physical Therapy Science, 26(3), 359-361. Retrieved from  Sinemet. (2014). Retrieved April, 2015, from  Sisto, S. A., Forrest, G. F., & Glendinning, D. (2002). Virtual Reality Applications for Motor Rehabilitation After Stroke. Topics in Stroke Rehabilitation, 8(4), 11–23.  Smania, N., Corato, E., Tinazzi, M., Stanzani, C., Fiaschi, A., Girardi, P., & Gandolfi, M. (2010). Effect of balance training on postural instability in patients with idiopathic Parkinson’s disease. Neurorehabilitation and Neural Repair, 24(9), 826-834. Retrieved from Smania, N., Fonte, C., Picelli, A., Gandolfi, M., & Varalta, V. (2013). Effect of Eye Patching in Rehabilitation of Hemispatial Neglect. Frontiers in Human Neuroscience, 7.  Srivastava, A., Taly, A. B., Gupta, A., Kumar, S., & Murali, T. (2016). Bodyweight-supported treadmill training for retraining gait among chronic stroke survivors: A randomized controlled study. Annals of Physical and Rehabilitation Medicine, 59(4), 235–241. Stanley, K. (2007). Statistical Primer for Cardiovascular research:Evaluation of randomized controlled trials. Circulation, 115, 1819-1822. Retrieved from  Strait, M., & Scheutz, M. (2014). What we can and cannot (yet) do with functional near infrared spectroscopy. Frontiers in Neuroscience, 8.  Steib, S., Klamroth, S., Gaßner, H., Pasluosta, C., Eskofier, B., Winkler, J., Klucken, J., & Pfeifer, K. (2017). Perturbation During Treadmill Training Improves Dynamic Balance and Gait in Parkinson’s Disease: A Single-Blind Randomized Controlled Pilot Trial. Neurorehabilitation and Neural Repair, 31(8), 758–768.  Thiamwong, L., & Decker, V. B. (2020). Overcoming an Irrational Fear of Falling: A Case Study. Clinical Case Studies, 19(5), 355–369.  Toots, A., Wiklund, R., Littbrand, H., Nordin, E., Nordström, P., Lundin-Olsson, L., Gustafson, Y., & Rosendahl, E. (2019). The Effects of Exercise on Falls in Older People With Dementia Living in Nursing Homes: A Randomized Controlled Trial. Journal of the American Medical Directors Association, 20(7), 835–842.e1. Wang, Y., Bhatt, T., Liu, X., Wang, S., Lee, A., Wang, E., & Pai, Y. C. C. (2019). Can treadmill-slip perturbation training reduce immediate risk of over-ground-slip induced fall among community-dwelling older adults? Journal of Biomechanics, 84, 58–66.  Winser, S. J., Kannan, P., Bello, U. M., & Whitney, S. L. (2019). Measures of balance and falls risk prediction in people with Parkinson’s disease: a systematic review of psychometric properties. Clinical Rehabilitation, 33(12), 1949–1962.  Yang, F., Bhatt, T., & Pai, Y. C. (2013). Generalization of treadmill-slip training to prevent a fall following a sudden (novel) slip in over-ground walking. Journal of Biomechanics, 46(1), 63–69.  Yang, F., & Pai, Y. C. (2013). Alteration in community-dwelling older adults’ level walking following perturbation training. Journal of Biomechanics, 46(14), 1-10. Retrieved from  Yang, F., Cereceres, P., & Qiao, M. (2018). Treadmill-based gait-slip training with reduced training volume could still prevent slip-related falls. Gait & Posture, 66, 160–165.  Young, W. R., & Mark Williams, A. (2015). How fear of falling can increase fall-risk in older adults: Applying psychological theory to practical observations. Gait & Posture, 41(1), 7–12.

bottom of page