top of page

Proprioceptive Rehabilitation for Clients with

Parkinson's Disease

Proprioceptive rehabilitation for the client with Parkinson’s Disease

 

By: Douglas Weiss DPT

FPTA Approved 15.5 CE’s, through 12/31/24

Target Audience: Physical Therapists and Physical Therapy Assistants

 

If you see clients with Parkinson’s Disease or movement disorders, this course will change the way you view ataxia and give you an entirely new toolset to help your clients regain their mobility. Learn how to use proprioceptive rehabilitation to improve function, gait, and balance in clients suffering from Parkinson’s disease and other movement disorders. Evidenced-based and clinically proven activities and techniques allow the therapist to restore gait and function in clients with cerebellar and basal ganglia damage. Update your approach to Parkinson’s treatment.

Module 1 Proprioceptive Rehabilitation Core concepts

 
Introduction to defining Proprioception, balance, balance awareness and control, And the basic concepts of balance and proprioceptive rehabilitation

  • What is proprioceptive Rehabilitation? 

  • Anatomy of the proprioceptive balance system

  • Proprioception: learned or acquired? 

  • Defining balance, proprioception, and function

  • What is a balance challenge?

  • Balance: A motor function.

  • How is the skill of balance normally lost? 

  • What does proprioceptive loss look like? 

  • Proprioceptive rehabilitation defined

  • Effective Proprioceptive rehabilitation activities and exercise 

  • Peripheral balance system

  • Anatomy physiology of the inner ear and vestibular system

  • The limbic system, fear, and balance

  • Fear of falling and fall risk

  • Whole body proprioception and balance. 

  • What is balance programming?

  • How is balance improved?

  • Anxiety and balance 

  • How older adults relearn balance 

  • How does brain injury limit gait?

  • Case study: Loss of strength vs. loss of coordination

  • The role of instruction in improving balance 

  • Application of proprioceptive rehab to your client

  • The correct level of assistance in proprioceptive rehab

  • Effective treatment time for proprioceptive rehabilitation

  • Vertigo and Balance 

  •  Module 1 Quiz

Module 2  Parkinson’s Disease and Movement Disorders
 

Introduction on how Parkinson’s Disease can affect balance and limit ability

  • What causes Parkinson’s Disease

  • How can Parkinson’s change someone's movement

  • What Parkinson’s does cause 

  • How Parkinson’s limit’s ability 

  • Fear of falling and Parkinson’s 

  • Activities that help clients with Parkinson’s 

·      Module 2 Quiz

 

Module 3 Complicating Factors: Dementia

 

Introduction on how Dementia can affect balance and limit ability 

  • What is Dementia

  • How Dementia affects a client

  • Communication considerations for clients with memory loss

  • How to handle aggressive behavior in elderly clients

  • How to adapt training 

  • Circuit training 

  • Module 3 Quiz – 15 mins

Module 4 Gait Analysis and Deviations


How to identify normal gait patterns vs. gait patterns that limit walking ability and increase falls

  • Normal phases of gait

  • Wide based gait pattern

  • Decreased step height

  • Decreased step length

  • Uneven step length

  • Decreased heel strike

  • Decreased weight shift

  • Hyperextension during stance

  • Antalgic gait pattern

  • Freezing

  • Dystonia 

  • Shuffling

  • How Parkinson’s affects gait

  • How anxiety affects gait

  • Module 4 Quiz


Module 5 Research Evidenced-Based Parkinson’s Rehabilitation


In depth review of 18 research articles that provide current evidence on the effects of balance training on individuals suffering from Parkinson’s disease

  • Statistics of falls

  • Activities that reduce falls in elderly

  • Perturbation based training for fall reduction in older adults

  • Best practice to prevent falls in older adults

  • Does perturbation training prevent falls in older adults

  • Exercises to prevent falls in older adults

  • Perturbation based balance training for fall reduction amongst older adults

  • The clinical application of backwards walking training to improve walking function balance

  • Gait and step training to reduce falls in Parkinson’s Disease

  • Examining Neuroplasticity for slip perturbation training

  • Exercises for preventing falls for older people living in a community

  • Contribution of muscle weakness to postural ability in the elderly

  • Effect of balance training on postural instability in patients with idiopathic Parkinson’s Disease 

  • Effects of balance training on performance on healthy older adults/ A systematic review and meta-analysis

  • Exercises to prevent falls in older adults/ An updated meta-analysis and best practice recommendations

  • How fear of falling can increase fall risk in older adults

  • Perturbation based training for fall reduction among older adults/ Current evidence and implication for clinical practice

  • Parkinson’s research

  • Module 5 Quiz

Module 6 Parkinson’s Rehabilitation Activities


Comprehensive video example of all activities proven to improve individuals suffering from Parkinson’s Disease

  • Low level single step 

  • Advanced single step 

  • Beginning balance challenge 

  • Beginning static challenge 

  • Moderate Balance Challenge 

  • Turning Challenge 

  • Resisted Activities

  • Multitask 

  • Obstacle Course

  • Stepping on stairs

  • Resisted Activities

  • Module 6 Quiz

Module 7 Neurolastic Parkinson’s Rehabilitation Certification Exam

A comprehensive exam that covers all modules in the series. A pass rate of 80% is required to earn a certificate

 

Course Materials


The 48-page Neurolastic Training Handbook details all activities discussed in the course to rapidly improve individuals suffering from Parkinson’s Disease

Resources/Works Cited

Alashram, A. R., Annino, G., & Mercuri, N. B. (2019). Task-oriented Motor Learning in Upper Extremity Rehabilitation Post Stroke. Journal of Stroke Medicine, 2(2), 95–104. https://doi.org/10.1177/2516608519864760  Askim, T., Indredavik, B., Vangberg, T., & Håberg, A. (2008). Motor Network Changes Associated With Successful Motor Skill Relearning After Acute Ischemic Stroke: A Longitudinal Functional Magnetic Resonance Imaging Study. Neurorehabilitation and Neural Repair, 23(3), 295–304. https://doi.org/10.1177/1545968308322840  Berg, K. (1989). Measuring balance in the elderly: preliminary development of an instrument. Physiotherapy Canada, 41(6), 304–311. https://doi.org/10.3138/ptc.41.6.304  Beyaert, C., Vasa, R., & Frykberg, G. (2015). Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiologie Clinique/Clinical Neurophysiology, 45(4–5), 335–355. https://doi.org/10.1016/j.neucli.2015.09.005 Bower, K. J., Clark, R. A., McGinley, J. L., Martin, C. L., & Miller, K. J. (2014). Clinical feasibility of the Nintendo WiiTM for balance training post-stroke: a phase II randomized controlled trial in an inpatient setting. Clinical Rehabilitation, 28(9), 912–923. https://doi.org/10.1177/0269215514527597  Blobaum, P. (2006). Physiotherapy Evidence Database (PEDro). Journal of the Medical Library Association, 94(4), 477-478. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1629414/  Cadore, E. L., Rodríguez-Mañas, L., Sinclair, A., & Izquierdo, M. (2013). Effects of Different Exercise Interventions on Risk of Falls, Gait Ability, and Balance in Physically Frail Older Adults: A Systematic Review. Rejuvenation Research, 16(2), 105–114. https://doi.org/10.1089/rej.2012.1397  Cakit, B. D., Saracoglu, M., Genc, H., Erdem, H. R., & Inan, L. (2007). The effects of incremental speed-dependent treadmill training on postural instability and fear of falling in Parkinson’s disease. Clinical Rehabilitation, 21(8), 698–705. https://doi.org/10.1177/0269215507077269  Canning, C. G., Sherrington, C., Lord, S. R., Close, J. C. T., Heritier, S., Heller, G. Z., Howard, K., Allen, N. E., Latt, M. D., Murray, S. M., O’Rourke, S. D., Paul, S. S., Song, J., & Fung, V. S. C. (2014). Exercise for falls prevention in Parkinson disease: A randomized controlled trial. Neurology, 84(3), 304–312. https://doi.org/10.1212/wnl.0000000000001155  Cherup, N. P., Buskard, A. N., Strand, K. L., Roberson, K. B., Michiels, E. R., Kuhn, J. E., Lopez, F. A., & Signorile, J. F. (2019). Power vs strength training to improve muscular strength, power, balance and functional movement in individuals diagnosed with Parkinson’s disease. Experimental Gerontology, 128, 110740. https://doi.org/10.1016/j.exger.2019.110740  Chien, J. E., & Hsu, W. L. (2018). Effects of Dynamic Perturbation-Based Training on Balance Control of Community-Dwelling Older Adults. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-35644-5  Chung, C. L. H., Thilarajah, S., & Tan, D. (2015). Effectiveness of resistance training on muscle strength and physical function in people with Parkinson’s disease: a systematic review and meta-analysis. Clinical Rehabilitation, 30(1), 11–23. https://doi.org/10.1177/0269215515570381  Conradsson, D., Löfgren, N., Nero, H., Hagströmer, M., Ståhle, A., Lökk, J., & Franzén, E. (2015). The Effects of Highly Challenging Balance Training in Elderly With Parkinson’s Disease. Neurorehabilitation and Neural Repair, 29(9), 827–836. https://doi.org/10.1177/1545968314567150  Dibble, L. E., Addison, O., & Papa, E. (2009). The effects of exercise on balance in persons with Parkinson’s disease: A systematic review across the disability spectrum. Journal of Neurologic Physical Therapy, 33(1), 14-26. Retrieved from http://dx.doi.org/10.1097/NPT.0b013e3181990fcc Duchesne, C., Gheysen, F., Bore, A., Albouy, G., Nadeau, A., Robillard, M., Bobeuf, F., Lafontaine, A., Lungu, O., Bherer, L., & Doyon, J. (2016). Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson’s disease individuals. NeuroImage: Clinical, 12, 559–569. https://doi.org/10.1016/j.nicl.2016.09.011  Enchelmayer, K. B., Hamby, E. F., & Martindale, C. (2001). The impact of the Balanced Budget Act of 1997 on the physical therapy profession. Health Care Management, 19(3), 58-69. Retrieved from http://journals.lww.com/healthcaremanagerjournal/Abstract/2001/19030/The_Impact_of_the_Balanced_ Budget _ Act _of_1997_on.9.aspx  Gerards, M. H., McCrum, C., Mansfield, A., & Meijer, K. (2017). Perturbation-based balance training for falls reduction among older adults: Current evidence and implications for clinical practice. Geriatrics & Gerontology International, 17(12), 2294–2303. https://doi.org/10.1111/ggi.13082  Gillespie, L. D., Robertson, M. C., Gillespie, W. J., Lamb, S. E., Gates, S., Cumming, R. G., & Rowe, B. H. (2009). Interventions for preventing falls in older people living in the community. Cochrane Database System Review, 15. Retrieved from http://dx.doi.org/10.1002/14651858.CD007146.pub2  Goh, S. L., Persson, M. S. M., Stocks, J., Hou, Y., Welton, N. J., Lin, J., Hall, M. C., Doherty, M., & Zhang, W. (2019). Relative Efficacy of Different Exercises for Pain, Function, Performance and Quality of Life in Knee and Hip Osteoarthritis: Systematic Review and Network Meta-Analysis. Sports Medicine, 49(5), 743–761. https://doi.org/10.1007/s40279-019-01082-0  Goodwin, V. A., Richards, S. H., Taylor, R. S., Taylor, A. H., & Campbell, J. L. (2008). The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis. Movement Disorders, 23(5), 631-640. Retrieved from http://dx.doi.org/10.1002/mds.21922  Hackney, M. E., & Earhart, G. M. (2008). Tai Chi improves balance and mobility in people with Parkinson disease. Gait & Posture, 28(3), 456–460. https://doi.org/10.1016/j.gaitpost.2008.02.005  Hadjistavropoulos, T., Delbaere, K., & Fitzgerald, T. D. (2010). Reconceptualizing the Role of Fear of Falling and Balance Confidence in Fall Risk. Journal of Aging and Health, 23(1), 3–23. https://doi.org/10.1177/0898264310378039  Halvarsson, A., Olsson, E., Farén, E., Pettersson, A., & Ståhle, A. (2011). Effects of new, individually adjusted, progressive balance group training for elderly people with fear of falling and tend to fall: a randomized controlled trial. Clinical Rehabilitation, 25(11), 1021–1031. https://doi.org/10.1177/0269215511411937  Halvarsson, A., Franzén, E., Farén, E., Olsson, E., Oddsson, L., & Ståhle, A. (2012). Long-term effects of new progressive group balance training for elderly people with increased risk of falling – a randomized controlled trial. Clinical Rehabilitation, 27(5), 450–458. https://doi.org/10.1177/0269215512462908  Halvarsson, A., Franzen, E., & Stahle, A. (2015). Balance training with multi-task exercise improves fall-related self efficacy, gait, balance performance and physical function in older adults with osteoporosis: a randomized controlled trial. Clinical Rehabilitation, 29(4), 365-375. Retrieved from http://dx.doi.org/10.117/0269215514544983  Hausdorff, J. M., Rios, D. A., & Edelberg, H. K. (2001). Gait variability and fall risk in community-living older adults: A 1-year prospective study. Archives of Physical Medicine and Rehabilitation, 82(8), 1050–1056. Retrieved from http://dx.doi.org/10.1053/apmr.2001.24893  Handelzalts, S., Steinberg-Henn, F., Levy, S., Shani, G., Soroker, N., & Melzer, I. (2019). Insufficient Balance Recovery Following Unannounced External Perturbations in Persons With Stroke. Neurorehabilitation and Neural Repair, 33(9), 730–739. https://doi.org/10.1177/1545968319862565  Hardwick, R. M., Rajan, V. A., Bastian, A. J., Krakauer, J. W., & Celnik, P. A. (2016). Motor Learning in Stroke. Neurorehabilitation and Neural Repair, 31(2), 178–189. https://doi.org/10.1177/1545968316675432  Holtzer, R., Epstein, N., Mahoney, J. R., Izzetoglu, M., & Blumen, H. M. (2014). Neuroimaging of Mobility in Aging: A Targeted Review. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 69(11), 1375–1388. https://doi.org/10.1093/gerona/glu052  Horak, F. B., Wrisley, D. M., & Frank, J. (2009). The Balance Evaluation Systems Test (BESTest) to differentiate balance deficits. Physical Therapy, 89(5), 484–498. Retrieved from http://dx.doi.org/10.2522/ptj.20080071  Horlings, C. G., van Engelen, B. G., Allum, J. H., & Bloem, B. R. (2008). A weak balance: the contribution of muscle weakness to postural instability and falls. Nature Clinical Practice Neurology, 4(9), 504–515. https://doi.org/10.1038/ncpneuro0886  Howe, T. E., Rochester, L., Neil, F., Skelton, D. A., & Ballinger, C. (2011). Exercise for improving balance in older people (Review). The Cochrane Collaboration.  Humulin. (2015). Retrieved April, 2015, from www.rxlist.com  The immediate influence of implicit motor learning strategies on spatiotemporal gait parameters in stroke patients: a randomized within-subjects design. (2019). Gait & Posture, 73, 575–576. https://doi.org/10.1016/j.gaitpost.2019.07.148  Integration of balance and strength training into daily life activity to reduce rate of falls in older people (the LiFE study): randomised parallel trial. (2012). BMJ, 345(aug15 2), e5528. https://doi.org/10.1136/bmj.e5528  Jessop, R. T., Horowicz, C., & Dibble, L. E. (2006). Motor Learning and Parkinson Disease: Refinement of Movement Velocity and Endpoint Excursion in a Limits of Stability Balance Task. Neurorehabilitation and Neural Repair, 20(4), 459–467. https://doi.org/10.1177/1545968306287107  Jewell, D. V. (2011). Guide to evidence-based physical therapist practice (2nd ed.). Sudbury, MA: Jones and Bartlett Learning.  Jonsdottir, J., Cattaneo, D., Recalcati, M., Regola, A., Rabuffetti, M., Ferrarin, M., & Casiraghi, A. (2010). Task-Oriented Biofeedback to Improve Gait in Individuals With Chronic Stroke: Motor Learning Approach. Neurorehabilitation and Neural Repair, 24(5), 478–485. https://doi.org/10.1177/1545968309355986  Joshua, A. M. (2014). Effectiveness of Progressive Resistance Strength Training Versus Traditional Balance Exercise in Improving Balance Among the Elderly - A Randomised Controlled Trial. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. https://doi.org/10.7860/jcdr/2014/8217.4119 de Kam, D., Roelofs, J. M. B., Bruijnes, A. K. B. D., Geurts, A. C. H., & Weerdesteyn, V. (2017). The Next Step in Understanding Impaired Reactive Balance Control in People With Stroke: The Role of Defective Early Automatic Postural Responses. Neurorehabilitation and Neural Repair, 31(8), 708–716. https://doi.org/10.1177/1545968317718267  Latham, N., & Liu, C. J. (2010). Strength Training in Older Adults: The Benefits for Osteoarthritis. Clinics in Geriatric Medicine, 26(3), 445–459. https://doi.org/10.1016/j.cger.2010.03.006  Lesinski, M., Hortobágyi, T., Muehlbauer, T., Gollhofer, A., & Granacher, U. (2015). Effects of Balance Training on Balance Performance in Healthy Older Adults: A Systematic Review and Meta-analysis. Sports Medicine, 45(12), 1721–1738. https://doi.org/10.1007/s40279-015-0375-y Leddy, A. L., Crowner, B. E., & Earhart, G. M. (2011). Functional gait assessment and Balance Evaluation System Test: Reliability, validity, sensitivity, and specificity for identifying individuals with Parkinson disease who fall. Physical Therapy, 91(1), 102-113. Retrieved from http://dx.doi.org/10.2522/ptj.20100113  Liphart, J., Gallichio, J., Tilson, J. K., Pei, Q., Wu, S. S., & Duncan, P. W. (2015). Concordance and discordance between measured and perceived balance and the effect on gait speed and falls following stroke. Clinical Rehabilitation, 30(3), 294–302. https://doi.org/10.1177/0269215515578294  Li, Z., Han, X. G., Sheng, J., & Ma, S. J. (2015). Virtual reality for improving balance in patients after stroke: A systematic review and meta-analysis. Clinical Rehabilitation, 30(5), 432–440. https://doi.org/10.1177/0269215515593611  Liu, J., & Kim, S. (2012). Effect of walking surface perturbation training on slip propensity and local dynamic stability. Work, 41, 3352–3354. https://doi.org/10.3233/wor-2012-0605-3352  Liu, H. H., Yeh, N. C., Wu, Y. F., Yang, Y. R., Wang, R. Y., & Cheng, F. Y. (2019). Effects of Tai Chi Exercise on Reducing Falls and Improving Balance Performance in Parkinson’s Disease: A Meta-Analysis. Parkinson’s Disease, 2019, 1–8. https://doi.org/10.1155/2019/9626934  Lurie, J. D., Zagaria, A. B., Pidgeon, D. M., Forman, J. L., & Spratt, K. F. (2013). Pilot comparative effectiveness study of surface perturbation treadmill training to prevent falls in older adults. BMC Geriatrics, 13, 1-11. Retrieved from http://dx.doi.org/10.1186/1471-2318-13-49  Maki, B. E., Sibley, K. M., Jaglal, S. B., Bayley, M., Brooks, D., Fernie, G. R., Flint, A. J., Gage, W., Liu, B. A., McIlroy, W. E., Mihailidis, A., Perry, S. D., Popovic, M. R., Pratt, J., & Zettel, J. L. (2011). Reducing fall risk by improving balance control: Development, evaluation and knowledge-translation of new approaches. Journal of Safety Research, 42(6), 473–485. https://doi.org/10.1016/j.jsr.2011.02.002  McCrum, C., Gerards, M. H. G., Karamanidis, K., Zijlstra, W., & Meijer, K. (2017). A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults. European Review of Aging and Physical Activity, 14(1). https://doi.org/10.1186/s11556-017-0173-7  Mirelman, A., Rochester, L., Reelick, M., Nieuwhof, F., Pelosin, E., Abbruzzese, G., Dockx, K., Nieuwboer, A., & Hausdorff, J. M. (2013). V-TIME: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial. BMC Neurology, 13(1). https://doi.org/10.1186/1471-2377-13-15  Mirelman, A., Maidan, I., Herman, T., Deutsch, J. E., Giladi, N., & Hausdorff, J. M. (2010). Virtual Reality for Gait Training: Can It Induce Motor Learning to Enhance Complex Walking and Reduce Fall Risk in Patients With Parkinson’s Disease? The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66A(2), 234–240. https://doi.org/10.1093/gerona/glq201  Mirelman, A., Rochester, L., Olde Rikkert, M., Bloem, B., Giladi, N., Nieuwboer, A., & Hausdorff, J. (2017). TREADMILL TRAINING WITH VIRTUAL REALITY TO REDUCE FALLS AMONG OLDER ADULTS: RCT RESULTS. Innovation in Aging, 1(suppl_1), 1366. https://doi.org/10.1093/geroni/igx004.5026  Morris, M. E., Taylor, N. F., Watts, J. J., Evans, A., Horne, M., Kempster, P., Danoudis, M., McGinley, J., Martin, C., & Menz, H. B. (2017). A home program of strength training, movement strategy training and education did not prevent falls in people with Parkinson’s disease: a randomised trial. Journal of Physiotherapy, 63(2), 94–100. https://doi.org/10.1016/j.jphys.2017.02.015  Morris, M. E., Menz, H. B., McGinley, J. L., Watts, J. J., Huxham, F. E., Murphy, A. T., Danoudis, M. E., & Iansek, R. (2015). A Randomized Controlled Trial to Reduce Falls in People With Parkinson’s Disease. Neurorehabilitation and Neural Repair, 29(8), 777–785. https://doi.org/10.1177/1545968314565511  Muir, S. W., Berg, K., Chesworth, B., & Speechless, M. (2008). Use of the Berg Balance Scale for predicting multiple falls in community-dwelling elderly people: A prospective study. Physical Therapy, 88(4), 449-459. Retrieved from http://dx.doi.org/10..2522// ptj.20070251  Nepveu, J. F., Thiel, A., Tang, A., Fung, J., Lundbye-Jensen, J., Boyd, L. A., & Roig, M. (2017). A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals With Stroke. Neurorehabilitation and Neural Repair, 31(8), 726–735. https://doi.org/10.1177/1545968317718269  Noh, H. J., Lee, S. H., & Bang, D. H. (2019). Three-Dimensional Balance Training Using Visual Feedback on Balance and Walking Ability in Subacute Stroke Patients: A Single-Blinded Randomized Controlled Pilot Trial. Journal of Stroke and Cerebrovascular Diseases, 28(4), 994–1000. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.12.016  Oddsson, L. I., Karlsson, R., Konrad, J., Ince, S., Williams, S. R., & Zemkova, E. (2007). A rehabilitation tool for functional balance using altered gravity and virtual reality. Journal of NeuroEngineering and Rehabilitation, 4(1). https://doi.org/10.1186/1743-0003-4-25  Paul, S. S., Canning, C. G., Song, J., Fung, V. S., & Sherrington, C. (2013). Leg muscle power is enhanced by training in people with Parkinson’s disease: a randomized controlled trial. Clinical Rehabilitation, 28(3), 275–288. https://doi.org/10.1177/0269215513507462  Paul, S. S., Dibble, L. E., & Peterson, D. S. (2018). Motor learning in people with Parkinson’s disease: Implications for fall prevention across the disease spectrum. Gait & Posture, 61, 311–319. https://doi.org/10.1016/j.gaitpost.2018.01.026  Pirouzi, S., Motealleh, A. R., Fallahzadeh, F., & Fallahzadeh, M. A. (2014). Effectiveness of treadmill training on balance control in elderly people: A randomized controlled clinical trial. Iranian Journal of Medical Sciences, 39(6), 565-570. Retrieved from http://ijms.sums.ac.ir/index.php/IJMS/article/view/1235  Pohl, M., Rockstroh, G., Ruckriem, S., Mrass, G., & Mehrholz, J. (2003). Immediate effects of speed-dependent treadmill training on gait parameters in early Parkinson’s disease. Archives of Physical Medicine and Rehabilitation, 84, 1760-1766. Retrieved from http://dx.doi.org/10.1016/S0003-9993(03)00433-7  Pollock, C., Eng, J., & Garland, S. (2011). Clinical measurement of walking balance in people post stroke: a systematic review. Clinical Rehabilitation, 25(8), 693–708. https://doi.org/10.1177/0269215510397394  Ramazzina, I., Bernazzoli, B., & Costantino, C. (2017). Systematic review on strength training in Parkinson’s disease: an unsolved question. Clinical Interventions in Aging, Volume 12, 619–628. https://doi.org/10.2147/cia.s131903  Rochester, L., Baker, K., Hetherington, V., Jones, D., Willems, A. M., Kwakkel, G., van Wegen, E., Lim, I., & Nieuwboer, A. (2010). Evidence for motor learning in Parkinson’s disease: Acquisition, automaticity and retention of cued gait performance after training with external rhythmical cues. Brain Research, 1319, 103–111. https://doi.org/10.1016/j.brainres.2010.01.001  de Rooij, I. J., van de Port, I. G., & Meijer, J. W. G. (2016). Effect of Virtual Reality Training on Balance and Gait Ability in Patients With Stroke: Systematic Review and Meta-Analysis. Physical Therapy, 96(12), 1905–1918. https://doi.org/10.2522/ptj.20160054  Samuelsson, C. M., Hansson, P. O., & Persson, C. U. (2018). Early prediction of falls after stroke: a 12-month follow-up of 490 patients in The Fall Study of Gothenburg (FallsGOT). Clinical Rehabilitation, 33(4), 773–783. https://doi.org/10.1177/0269215518819701  Shen, X., & Mak, M. K. Y. (2014). Technology-Assisted Balance and Gait Training Reduces Falls in Patients With Parkinson’s Disease. Neurorehabilitation and Neural Repair, 29(2), 103–111. https://doi.org/10.1177/1545968314537559  Schinkel-Ivy, A., Huntley, A. H., Aqui, A., & Mansfield, A. (2019). Does Perturbation-Based Balance Training Improve Control of Reactive Stepping in Individuals with Chronic Stroke? Journal of Stroke and Cerebrovascular Diseases, 28(4), 935–943. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.12.011  Saeys, W., Vereeck, L., Truijen, S., Lafosse, C., Wuyts, F. P., & van de Heyning, P. (2011). Randomized Controlled Trial of Truncal Exercises Early After Stroke to Improve Balance and Mobility. Neurorehabilitation and Neural Repair, 26(3), 231–238. https://doi.org/10.1177/1545968311416822  Sherrington, C., Michaleff, Z., Fairhall, N., Tiedemann, A., Whitney, J., Cumming, R., Close, J., & Lord, S. (2017). EXERCISE TO PREVENT FALLS IN OLDER ADULTS: AN UPDATED SYSTEMATIC REVIEW AND META-ANALYSIS. Innovation in Aging, 1(suppl_1), 268. https://doi.org/10.1093/geroni/igx004.982  Sherrington, C., Michaleff, Z., Fairhall, N., Tiedemann, A., Whitney, J., Cumming, R., Close, J., & Lord, S. (2017b). EXERCISE TO PREVENT FALLS IN OLDER ADULTS: AN UPDATED SYSTEMATIC REVIEW AND META-ANALYSIS. Innovation in Aging, 1(suppl_1), 268. https://doi.org/10.1093/geroni/igx004.982  Sherrington, C., Tiedemann, A., Fairhall, N., Close, J. C., & Lord, S. R. (2011). Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. New South Wales Public Health Bulletin, 22(4), 78. https://doi.org/10.1071/nb10056  Shimada, H., Obuchi, S., Furuna, T., & Suzuki, T. (2004). New Intervention Program for Preventing Falls Among Frail Elderly People. American Journal of Physical Medicine & Rehabilitation, 83(7), 493–499. https://doi.org/10.1097/01.phm.0000130025.54168.91  Shin, S. S., & An, D. H. (2014). The effect of motor dual-task balance training on balance and gait of elderly women. Journal of Physical Therapy Science, 26(3), 359-361. Retrieved from http://dx.doi.org/10.1589/jpts.26.359  Sinemet. (2014). Retrieved April, 2015, from www.rxlist.com  Sisto, S. A., Forrest, G. F., & Glendinning, D. (2002). Virtual Reality Applications for Motor Rehabilitation After Stroke. Topics in Stroke Rehabilitation, 8(4), 11–23. https://doi.org/10.1310/yabd-14ka-159p-mn6f  Smania, N., Corato, E., Tinazzi, M., Stanzani, C., Fiaschi, A., Girardi, P., & Gandolfi, M. (2010). Effect of balance training on postural instability in patients with idiopathic Parkinson’s disease. Neurorehabilitation and Neural Repair, 24(9), 826-834. Retrieved from http://dx.doi.org/10.1177/1545968310376057 Smania, N., Fonte, C., Picelli, A., Gandolfi, M., & Varalta, V. (2013). Effect of Eye Patching in Rehabilitation of Hemispatial Neglect. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00527  Srivastava, A., Taly, A. B., Gupta, A., Kumar, S., & Murali, T. (2016). Bodyweight-supported treadmill training for retraining gait among chronic stroke survivors: A randomized controlled study. Annals of Physical and Rehabilitation Medicine, 59(4), 235–241. https://doi.org/10.1016/j.rehab.2016.01.014 Stanley, K. (2007). Statistical Primer for Cardiovascular research:Evaluation of randomized controlled trials. Circulation, 115, 1819-1822. Retrieved from http://dx.doi.org/10.1161/CIRCULATIONAHA.106.618603  Strait, M., & Scheutz, M. (2014). What we can and cannot (yet) do with functional near infrared spectroscopy. Frontiers in Neuroscience, 8. https://doi.org/10.3389/fnins.2014.00117  Steib, S., Klamroth, S., Gaßner, H., Pasluosta, C., Eskofier, B., Winkler, J., Klucken, J., & Pfeifer, K. (2017). Perturbation During Treadmill Training Improves Dynamic Balance and Gait in Parkinson’s Disease: A Single-Blind Randomized Controlled Pilot Trial. Neurorehabilitation and Neural Repair, 31(8), 758–768. https://doi.org/10.1177/1545968317721976  Thiamwong, L., & Decker, V. B. (2020). Overcoming an Irrational Fear of Falling: A Case Study. Clinical Case Studies, 19(5), 355–369. https://doi.org/10.1177/1534650120942322  Toots, A., Wiklund, R., Littbrand, H., Nordin, E., Nordström, P., Lundin-Olsson, L., Gustafson, Y., & Rosendahl, E. (2019). The Effects of Exercise on Falls in Older People With Dementia Living in Nursing Homes: A Randomized Controlled Trial. Journal of the American Medical Directors Association, 20(7), 835–842.e1. https://doi.org/10.1016/j.jamda.2018.10.009 Wang, Y., Bhatt, T., Liu, X., Wang, S., Lee, A., Wang, E., & Pai, Y. C. C. (2019). Can treadmill-slip perturbation training reduce immediate risk of over-ground-slip induced fall among community-dwelling older adults? Journal of Biomechanics, 84, 58–66. https://doi.org/10.1016/j.jbiomech.2018.12.017  Winser, S. J., Kannan, P., Bello, U. M., & Whitney, S. L. (2019). Measures of balance and falls risk prediction in people with Parkinson’s disease: a systematic review of psychometric properties. Clinical Rehabilitation, 33(12), 1949–1962. https://doi.org/10.1177/0269215519877498  Yang, F., Bhatt, T., & Pai, Y. C. (2013). Generalization of treadmill-slip training to prevent a fall following a sudden (novel) slip in over-ground walking. Journal of Biomechanics, 46(1), 63–69. https://doi.org/10.1016/j.jbiomech.2012.10.002  Yang, F., & Pai, Y. C. (2013). Alteration in community-dwelling older adults’ level walking following perturbation training. Journal of Biomechanics, 46(14), 1-10. Retrieved from http://dx.doi.org/10.1016/j.jbiomech.2013.07.025  Yang, F., Cereceres, P., & Qiao, M. (2018). Treadmill-based gait-slip training with reduced training volume could still prevent slip-related falls. Gait & Posture, 66, 160–165. https://doi.org/10.1016/j.gaitpost.2018.08.029  Young, W. R., & Mark Williams, A. (2015). How fear of falling can increase fall-risk in older adults: Applying psychological theory to practical observations. Gait & Posture, 41(1), 7–12. https://doi.org/10.1016/j.gaitpost.2014.09.006

bottom of page